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Abstract: - We study the dynamics of a copolymer membrane diblock in hexagonal phase. We call diblock 
copolymer membrane a copolymer film with thickness of the order of the size of the domains and that it 
presents the possibility of deforming freely. In a flat system of copolymer, the dynamics of coarsenig produces 
the relaxation of energy by diffusion and annihilation of defects. In a copolymer membrane, relaxation of the 
energy of the hexagonal phase resulting from a combined effect of the diffusion and annihilation of defects and 
of the buckling process. 
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1 Introduction 
In recent years, there has been an increasing interest 
in the study of two-dimensional (2D) [1-6] textures 
on curved surfaces. This is motivated by the new 
properties that these systems present due to the 
coupling between the crystalline structure and the 
deformation metric. A clear example is observed in 
the dynamics of annihilation and buckling generated 
by the defect annihilation in graphene [7].  
The study of crystalline arrangements of particles on 
curved surfaces has its origin more than 100 years 
ago with the Thompson problem [8]. The problem 
original refers to the ground state of a set of 
electrons, on a spherical shell. On the plane, the 
equilibrium configuration of a set of charged 
particles with the same sign is an arrangement or 
crystal lattice perfectly ordered hexagonal, that is to 
say free of defects. 
The Gaussian curvature favors the formation of 
topological defects that they would be energetically 
prohibitive on flat crystals. The spherical shape has 
a positive Gaussian curvature that affects the 
equilibrium configuration of the particles confined 
in the shell. Balance settings contain defects on the 
hexagonal structure, something totally unexpected 
in a crystal flat. For spherical crystals with a low 
number of particles (~ 150), the settings balance 
equations contain 12 positive disclinations located 
in the vertices of an isocahedron [9]. 
The generalization of the Thompson problem 
includes biological systems, virus [10], colloidomas 
[11], pollen grains [12], systems of multielectrons in 
helium bubbles [13], fullerenes [14], etc. 

In out-of-equilibrium systems, curvature also alters 
the dynamics of dislocations, through a geometric 
potential modifying the movement. Glide and Climb 
of dislocations [15]. 
The reverse problem is also very interesting. 
Suppose we have a system with crystalline order, 
what will happen if we allow the substrate to 
misshapen? When a defect is on a membrane with 
freedom displacement will produce an instability on 
the surface that deforms the surface. The problem is 
known by the name of buckling. The buckling  
process results in the shielding of the topological 
load of the defect by bending. Recently the buckling 
studio has awakened a high interest in graphene 
films [7]. Ripples on the membrane graphene alter 
the electronic properties of the material.  
This study is focused on the description of the time 
evolution of a membrane with internal degrees of 
freedom that, below a critical temperature, 
undergoes a symmetry-breaking phase transition. 
 

2 Problem Formulation 
The dynamics of buckling on membranes has been 
studied using many different approaches, such as 
molecular dynamics [17] or Monte Carlo methods 
[18]. However, these approaches have a great 
computational complexity and the results are limited 
as regards simulation time and length scale of the 
represented system. The phase field model naturally 
incorporates the elasticity properties of the 
hexagonal phase and also provides an efficient 
approach over long periods of system evolution, in 
diffusive time scales. This approach has been used 
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in order to describe a wide range of systems on both 
atomic and mesoscopic length scales. For instance, 
pattern formation [19], grain boundary melting [20], 
defect dynamics [21], symmetry-breaking phase 
transitions [22], block copolymers [23], Langmuir 
films [24], and liquid crystals [25].  
To describe the dynamics of a crystalline 
membrane, we use a Brazovskii Hamiltonian model 
geometrically coupled to the topography of the 
membrane.  
The evolution of the crystalline structure occurs by 
means of the dynamics dictated by the Brazovskii 
Hamiltonian model, which evolves coupled to the 
membrane deformation through the dynamics 
imposed by the Helfrich-Canham Hamiltonian 
model. In the following sections, we detail the 
elements that make up the proposed model. 
 
2.1 Fluid Membrane 
Fluid membranes occur in a wide variety of 
systems, from biological ones to condensed matter 
ones, such as surfactant films, vesicles, and lipid 
bilayer membranes [26–28]. 

During the last few years, the equilibrium phases 
and structures have been investigated intensively 
through different methods, including molecular 
dynamics [29], Monte Carlo [30] and phase-field 
models [31]. 

We employ a phase-field approach to describe the 
morphology of the membrane during a symmetry-
breaking phase transition.  
In the Monge gauge, the deformation of a 
membrane can be described by  𝒓(𝑥, 𝑦) =
[𝒙, ℎ(𝑥, 𝑦)], where 𝒙 = {𝑥, 𝑦} represents a set of 
Cartesian coordinates in the plane, and 
𝑧 = ℎ(𝑥, 𝑦) is the out-of-plane deformation over the 
reference plane 𝒙 (see Fig. 1). The equilibrium 
properties of the fluid membrane are described by 
the Helfrich-Canham Hamiltonian model 𝐹𝐻𝐶 [32-
36]: 

 
𝐹𝐻𝐶 = ∫[𝐹1 + 𝐹2 + 𝐹3]√𝑔𝑑𝑥𝑑𝑦               (1)                                                    

 
Here, 𝑔 is the metric tensor [35]. The first term 
𝐹1 =

𝑘𝐵

2
(𝐻𝑚 − 𝐶0)

2 accounts for the bending elastic 
energy [35,36]. Where 𝑘𝐵 is the bending modulus, 
𝐻𝑚 is the mean curvature, and 𝐶0 is the 
homogeneous spontaneous curvature [37]. The 
second term 𝐹2 = 𝜎 is an isotropic contribution; 
therefore, the membrane area is characterized by a 

surface tension 𝜎. The third contribution 𝐹3 =
𝑘𝑔

2
𝑅 

is a topological invariant that only depends on the 
genus of the surface. In this term, 𝑘𝑏 is the Gaussian 
rigidity and R is the Gaussian curvature [38].  

In the Monge gauge, the surface properties are 
defined as follows: 

Tangent vectors to the surface: 
 

𝑒1⃗⃗  ⃗ = (1,0,
𝜕ℎ

𝜕𝑥1
) = (1,0, 𝜕1ℎ)                      (2) 

 
𝑒2⃗⃗  ⃗ = (0,1,

𝜕ℎ

𝜕𝑥2
) = (0,1, 𝜕2ℎ)                      (3) 

 
Normal vector: 
 
𝑛⃗ =

𝑒1⃗⃗⃗⃗ ∧𝑒2⃗⃗⃗⃗ 

|𝑒1⃗⃗⃗⃗ ∧𝑒2⃗⃗⃗⃗ |
=

1

√𝑔
(−𝜕1ℎ,−𝜕2ℎ, 1)                      (4) 

 

 
Figure 1. Monge gauge. The Monge gauge describes 

a surface by a single function 𝑧 = ℎ(𝑥, 𝑦), the 
height over a reference plane (𝑥, 𝑦). 

 
 

This vectors follow the condition: 
 

𝑒𝑖.⃗⃗⃗⃗ 𝑒𝑗⃗⃗⃗  = 𝛿𝑖,𝑗                                                         (5) 
 

𝑒𝑖⃗⃗⃗  . 𝑛⃗ = 0                                            (6) 
Where 𝑖, 𝑗 = 1,2 
 
 
The metric tensor 𝑔𝑖𝑗 = 𝑒𝑖⃗⃗⃗  . 𝑒𝑗⃗⃗⃗    
 

𝑔𝑖𝑗 = (
𝑒1⃗⃗  ⃗. 𝑒1⃗⃗  ⃗ 𝑒1⃗⃗  ⃗. 𝑒2⃗⃗  ⃗ 

𝑒2⃗⃗  ⃗. 𝑒2⃗⃗  ⃗ 𝑒2⃗⃗  ⃗. 𝑒1⃗⃗  ⃗ 
)                           (7) 
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In the Monge gauge is: 
 

𝑔𝑖𝑗 = (
1 + (𝜕1ℎ)2 (𝜕1ℎ)(𝜕2ℎ)

(𝜕1ℎ)(𝜕2ℎ) 1 + (𝜕2ℎ)2
)                (8) 

And the inverse: 
 

𝑔𝑖𝑗 =
1

𝑔
(

1 + (𝜕2ℎ)2 −(𝜕1ℎ)(𝜕2ℎ)

−(𝜕1ℎ)(𝜕2ℎ) 1 + (𝜕1ℎ)2
)         (9 ) 

 
The determinant of the metric tensor in the 

Monge representation has the following expression: 
 
𝑔 = |𝑔𝑖𝑗| = (1 + (𝜕1ℎ)2 + (𝜕2ℎ)2)            (10) 

 
Two parameters characterize a surface, the mean 

curvature and the Gaussian curvature. 
 

𝐻𝑚 =
1

2
(

1

𝑅1
+

1

𝑅2
)                              (11) 

 
Where are 𝑅1 and 𝑅2 the principals radius of 

curvature. 
In the Monge parametrization, the mean curvature 

is: 
 

𝐻𝑚 =
1

2
𝐾                              (12) 

 
Where 𝐾 is the trace of curvature tensor 𝐾𝑖𝑗 
 

𝐾𝑖𝑗 = −
1

√𝑔
(
𝜕11ℎ 𝜕12ℎ
𝜕21ℎ 𝜕22ℎ

)                    (13) 

 
The gaussian curvature: 

𝐺 =
1

𝑅1

1

𝑅2
                                           (14) 

 
In the Monge parametrization, the gausssian 

curvature is: 
 
𝐺 =

𝑅

2
=

1

𝑔2
(𝜕11ℎ𝜕22ℎ − (𝜕12ℎ)2)                    (15) 

 
Whrere 𝑅 is the scalar curvature. 

 

2.2 Crystalline Phase 
The dynamics of buckling is studied through a 
continuous phase field model. 

In the critical temperature surrounding, the order-
disorder transition is phenomenologically described 

by a Brazovskii Hamiltonian [29] modified to 
account for the geometry of the membrane: 

 
𝐹𝜙 = ∫(2(∇𝐿𝐵

2 )2 − 2∇𝑖𝜙∇𝑖𝜙 +
𝜏

2
𝜙2 +

1

4
𝜙4)𝑑𝐴     

(16)   
                           

Here we use the equation 𝜙(𝒓) = 𝜓(𝒓) − 𝜓0, 
where 𝜓(𝒓) is the local composition, and 𝜓0 is the 
average composition. The reduced temperature is 
represented by 𝜏 =

𝑇𝑐−𝑇

𝑇𝑐
 and the critical temperature 

by 𝑇𝑐. The expression of energy above is a modified 
version of the Ginzburg-Landau expansion. To 
incorporate the contribution of the surface 
geometry, the expression has been conveniently 
modified by using the differential operators. ∇𝐿𝐵

2  is 
the Laplace-Beltrami operator [36,37]. The standard 
convention of index summation has been used, 
where subscripts and superscripts indicate 
contravariant and covariant vectors, respectively. 
Below the critical temperature, the free-energy 
functional contributes to the formation of structures 
with hexagonal symmetry with a wavelength of  
𝑘0 = 1

√2
⁄  [5]. 

 
3 Crystalline Membrane Dynamics 
The total Hamiltonian that represents the dynamics 
of the membrane consists of the sum of the energies 
mentioned above, 𝐹 = 𝐹𝐻𝐶 + 𝐹𝜙. A dissipative 
model [30] is used to obtain the time evolution of 
the membrane deformation, ℎ parameter, and 
composition, 𝜙.  The dynamics of both order 
parameters is coupled through the membrane metric. 
The time evolution corresponds to the following 
equations: 

 
𝜕𝜙

𝜕𝑡
= −∇𝐿𝐵

2 (
𝛿𝐹

𝛿𝜙
) + 𝜂𝜙(𝒓, 𝑡)                 (17)   

                                                          
𝜕ℎ

𝜕𝑡
= −(

𝛿𝐹

𝛿ℎ
) + 𝜂ℎ(𝒓, 𝑡)                        (18)                                                                 

 
 
Here, 𝜂𝜙(𝒓, 𝑡) and 𝜂ℎ(𝒓, 𝑡) are the random 

Gaussian noise [31]. 
Then the contribution of the Brazovskii energy in 

the evolution of the membrane shape ℎ intervenes 
through differential operations that appear in the 
Brazovskii energy and implicitly depend on ℎ. 
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The 𝛿𝐹
𝛿𝜙⁄  expression represents the variational 

derivative of free energy regarding the order 
parameter 𝜙, explicitly: 

 
𝜕𝜙

𝜕𝑡
= Δ

𝛿𝐹

𝛿𝜙
= Δ[Δ2𝜙 + 4Δ𝜙 + 𝜏𝜙 + 𝜙3]          (19) 

 
The term 𝛿𝐹 𝛿ℎ⁄ , represents the variation of the 

energy with respect to theparameter ℎ. Helfrich-
Canham's energy related term incorporates 
explicitly its relation to the parameter ℎ, however 
the energy of Brazovskii implicitly incorporates its 
relationship to deformation through differential 
operators. 
Variation is calculated as follows, the variation of 
the position 𝛿𝑟  of any point that makes up the 
membrane correspond to a deformation 𝜓 in the 
normal direction 𝛿𝑟 = 𝜒𝑛̌. So, the 

variational derivative 𝛿𝐹 𝛿ℎ⁄ , can be rewritten in 
the function of 𝜓 of the following way: 

 
(
𝛿𝐹

𝛿ℎ
) = (

𝛿𝐹

𝛿𝜒
)                                    (20) 

 
the variation of energy is 
 

𝛿𝐹 = ∫[(𝐹𝜙 + 𝐹𝐻𝐶)𝛿𝑑𝐴 + 𝛿(𝐹𝜙 + 𝐹𝐻𝐶)𝑑𝐴]   
(21) 

 
The complete expression is as follows: 
 

𝜕ℎ

𝜕𝑡
= (𝐹𝜙 + 𝐹𝐻𝐶)𝐾 + 4𝐾𝑖𝑗∇𝑖𝜙∇𝑗𝜙 −

4𝐾(∇𝐿𝐵
2 𝜙)

2

√𝑔
+                𝐾 ((𝐻𝑚 − 𝐶0)(𝑅 − 𝐾2) −

∇𝐿𝐵
2 (𝐻 − 𝐶0))    (22) 

 
 
4 Numerical Simulation 
The equations (17) and (18) have been numerically 
solved using a semi-implicit pseudospectral 
algorithm with periodic boundary conditions. The 
time and spatial steps have been selected to provide 
numerical stability and precise resolution [39]. 
 

 
 
Figure 2. The images on the left correspond to the 

time evolution of the ℎ order parameter associated 
with the deformation height. The images on the 

right correspond to the time evolution of the order 
parameter 𝜙, i.e. the composition. 

Figure c corresponds to the critical time 𝑡𝑐, where 
the coupling between deformation and composition 
that evolves in a coupled manner from that moment 

on begins to be observed. 
Times: (a) t=0, (b) t=50 (c) t=100 (d) t=10000 

 
 
The time step used is ∆𝑡~10−4, and the spatial 

discretization is ∆𝑥~10−2, both of which are typical 
values used in these numerical schemes. The size of 
the simulated system is 𝐿𝑥𝐿 = 512𝑥512. In the 
appendix we detaild the code used.  
Figure (2) illustrates the time evolution of both 
order parameters. The parameters used are the 
following: 
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𝜓0 = 0.4, 𝜏 = 2.1, 𝜎 = 1.1, 𝑘𝐵 = 0.1 and 𝐶0 = 0, 
according to the parameters presented in section 2.1 
and 2.2, the values are chosen to represent a 
hexagonal membrane. The images on the left 
correspond to the time evolution of the ℎ order 
parameter associated with the deformation height. 
The images on the right correspond to the time 
evolution of the order parameter 𝜙, i.e. the 
composition. The figure show the coarsening 
kinetics of a crystalline membrane suffering a 
symmetry-breaking phase transition. A crystalline 
membrane can buckle out of the plane driven by the 
relaxation of the strain field introduced by 
topological defects. During the temporal evolution 
toward equilibrium the annihilation and diffusion of 
topological defects is dictated by the strong 
coupling between the membrane shape and the 
geometrically screened strain field associated with 
the defects. 

 
Figure 3. Hexagonal membrane. (a) Evolution of 

the membrane at long simulation times. 

 (b) Identification of the topological defects of the 
hexagonal structure. Note how the deformation is 

strongly located on the grain boundaries. 
 

4 Buckling Dynamics 
At the mesoscopic level, the order within the 
hexagonal phase alters or modifies the stiffness 
constant of the membrane. As a result, the dynamics 
towards the equilibrium of the membrane is 
modified. A linear analysis of the bending energy 
predicts an exponential decay of the modes that 
constitute the initial condition of the membrane 
[40]. The amplitude of the different 𝑞 modes  is 
obtained of the structure factor of the ℎ parameter. 
Note that we have used the 𝑞 notation to describe 
Fourier modes to avoid any confusion with the 𝑘 
value of the bending stiffness. The structure factor 
can be expressed as: 

 
𝑆ℎ(𝑞) = 〈|ℎ𝑞⃗ |

2
〉~

1

𝑘𝑞4                    (23)                                                    

 
Where ℎ𝑞⃗  represents the Fourier Transform of ℎ, 
and 〈 〉 represents the radial average over the wave 
vectors with equal 𝑞 modulus. 

The dynamics of a membrane with crystalline 
structure is different from that of a liquid membrane 
[41], in which the 𝑘 stiffness is an isotropic variable. 
In membranes with crystalline order, the crystalline 
structure produces a modification in the typical 
dynamics of the q modes, presented in equation (5). 
In the literature, it has been shown that the stiffness 
of the membrane can be renormalized to write a 
membrane with crystalline order according to the 
expression [42]: 

 
〈|ℎ𝑞⃗ |

2
〉 ~𝑞4−𝜂                          (24)                                                                     

 
Where 𝜂 = 2, according to the theory of partially 
polymerized membranes [43]. Experimental work 
shows that the value changes with respect to the 
theoretical value between (2-3.1) for different 
degrees of polymerization [44]. The structure factor 
of the ℎ parameter allows the analysis of the 
dynamics of the membrane and the study of the 
influence of the crystalline structure on it.  
 

5 Results and Discussion 
The time evolution of the order parameter 𝜙 and the 
ℎ height are illustrated in Figure (2). When 𝜙 
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reaches a critical value, the coupling between both 
parameters 𝜙 and ℎ occurs (Image c, Figure 2). 

The time when the coupling between both 
parameters occurs is identified as critical time 𝑡𝑐. 

In this model, the elastic constants of the 
membrane are determined through the value of the 
order of composition parameter. For an hexagonal 
configuration, we get 𝜆 = 30|𝐴𝑘|

2𝑘0
2 𝜇 = 6|𝐴𝑘|

2𝑘0
2 

y 𝐾0 =
𝜇(𝜇+𝜆)

2𝜇+𝜆
 [45]. Where 𝜆, 𝜇 are the Lamé 

constants and 𝐾0 represents the Young modulus. In 
all cases, the parameters depend on the amplitude of 
the composition 𝐴𝑘, which results for an hexagonal 
configuration. 
𝐴𝑘 =

1

15
(−3𝜓0 +

√3√20𝑘0
2 − 20𝑘0

2 − 5𝜏 − 12𝜓0
2) It is interesting to 

analyze the time evolution of the membrane 
deformation by calculating the structure factor of 
the ℎ parameter. 
Figure (3) shows the hexagonal arrangement and the 
deformation produced by topological defects, Note 
how the deformation is strongly located on the grain 
boundaries. 
This effect is also observed in Figure (4), where the 
temporal evolution is illustrated. 

  

Figure. 4. Time evolution of the membrane. Only 
the hexagonal pattern is illustrated in the last figure 

for clarity purposes and to better appreciate the 
evolution of the deformation, which corresponds to 

the time evolution shown in figure (2).  
Figure (5) shows the structure factor for different 

simulation time values of an hexagonal-phase 
membrane.  At short times, during the structure 
formation stage by spinodal decomposition, the 
dynamics between the parameters 𝜙 and ℎ is 
completely uncorrelated. In this time scale, we 
observe that the exponent  〈|ℎ𝑞⃗ |

2
〉~𝑞−4.3±03 

follows a similar law to the one predicted for a 
liquid membrane 〈|ℎ𝑞⃗ |

2
〉 ~𝑞−4 [43]. 

When the value of the order parameter reaches a 
critical value, the coupling between the composition 
or crystal structure and the deformation of the 
membrane occurs. In this time, which we call 
critical time, it occurs in our simulation in 𝑡𝑐 = 80. 
Note in Figure (5) the change in the exponent at 
subsequent times to the critical time. The exponent 
value varies from −4.3 ± 0.3 to −1.8 ± 0.2. The 
change in the exponent characterizes the dynamics 
of the hexagonal-phase copolymer membrane. Note 
that the long time exponent is comparable to the 
value observed in polymer membranes with 
different degrees of polymerization [43]. 

 

 
Figure 5. Structure factor of membrane 

deformation at different simulation times. 
The structure deformation factor of the membrane 
for different simulation times is illustrated in the 
figure. Note the change of exponent in the power 

law of the structure factor with respect to the wave 
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vector, which indicates a liquid membrane behavior 
at short times (𝑡 < 𝑡𝑐  )  and a crystalline membrane 

one at long times (𝑡 ≫ 𝑡𝑐). 
6 Conclusion 
In summary, the evolution of an hexagonal 
membrane is analyzed by means of numerical 
simulation. The evolution towards the equilibrium 
of the order parameter that represents the hexagonal 
phase modifies the deformation dynamics of the 
membrane shape, which results in the variation of 
the elastic constants of the membrane. 
The analysis by means of the structure factor of the 
evolution of the deformation of the membrane 
shows an evolution in early stages according to the 
dynamics of a liquid membrane and at long times 
the coupling with the hexagonal structure produces 
a dynamics according to the crystalline membrane. 
The coupling between the the topography of the 
membrane and the defects induces the pinning of 
positive disclinations and the formation of 
metastable structures of defects. The Brazovskii-
Helfrich-Canham approach described here provides 
a general framework for studying the dynamics of 
topological defects in crystalline membranes, and 
can be straightforwardly extended to crystalline 
phases with different symmetries, in future works 
we will analyze the buckling dynamics of 
membranes with different internal structures. 
 
Appendix: 

The equations (17) and (18) have been numerically 
solved using a semi-implicit pseudospectral 
algorithm with periodic boundary conditions. The 
time and spatial steps have been selected to provide 
numerical stability and precise resolution see 
reference [39] for more details. 
Numerical simulations are performed using the 
following code performed in the MATLAB 
language. 
 

% numerical simulation to study the buckling 
process in a %membrane with hexagonal order. 

 
clear all 
format long 
 
tau=0.3 %reduce temperature 
U0=0.1 %mean field 
 
Cf=0 % homogeneous spontaneous curvature 
s=0.33% surface tension 

 
del1=1 %spatial step 
del2=1 %spatial step 
nx=256 %matrix dimension 
my=256 %matrix dimension 
delt=0.0005  %temporal step 
time1=1500 
time2=1000 

 
%auxiliary matrix for the calculation of 

derivatives  
for n=1:nx; 
    for m=1:my; 
        A1(n,m)=(i/del1)*(sin(2*pi*(n-1)/nx)); 
    end 
end 
for n=1:nx; 
    for m=1:my; 
        A2(n,m)=(i/del2)*(sin(2*pi*(m-1)/my)); 
    end 
end 
for n=1:nx; 
    for m=1:my; 
        A12(n,m)=(-1/(del1*del2))*(sin(2*pi*(n-

1)/nx)*sin(2*pi*(m-1)/my)); 
    end 
end 
for n=1:nx; 
    for m=1:my; 
        A11(n,m)=(2/del1^2)*(cos(2*pi*(n-1)/nx)-

1); 
    end 
end 
for n=1:nx; 
    for m=1:my; 
        A22(n,m)=(2/del2^2)*(cos(2*pi*(m-1)/my)-

1); 
    end 
end 
 
%initial condition 
 U=(rand(n,m)-0.5)*0.01+U0; %order parameter 
  h=(rand(n,m)-0.5)*0.001;  %deformation  
 
%time evolution 
for t=1:time 
    for t2=1:time2 
hf=fft2(h); 
d1h=real(ifft2(A1.*hf)); 
d2h=real(ifft2(A2.*hf)); 
d12h=real(ifft2(A12.*hf)); 
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d21h=d12h; 
d11h=real(ifft2(A11.*hf)); 
d22h=real(ifft2(A22.*hf)); 

     %metric tensor components 
g=(ones(n,m)+(d1h).^2+(d2h).^2); 
 
g11=(ones(n,m)+(d2h).^2)./g; 
g12=(-(d1h).*(d2h))./g; 
g21=g12; 
g22=(ones(n,m)+(d1h).^2)./g; 
 
R111=d1h.*d11h./g; 
R112=d1h.*d12h./g; 
R121=d1h.*d21h./g; 
R122=d1h.*d22h./g; 
 
R211=d2h.*d11h./g; 
R212=d2h.*d12h./g; 
R221=d2h.*d21h./g; 
R222=d2h.*d22h./g; 

 
K11=-d11h./(sqrt(g)); 
K12=-d12h./(sqrt(g)); 
K21=K12; 
K22=-d22h./(sqrt(g)); 
 
KK11=g11.*(K11.*g11+K12.*g21)+g12.*(K21.*

g11+K22.*g21); 
KK12=g11.*(K11.*g12+K12.*g22)+g12.*(K21.*

g12+K22.*g22); 
KK21=g21.*(K11.*g11+K12.*g21)+g22.*(K21.*

g11+K22.*g21); 
KK22=g21.*(K11.*g12+K12.*g22)+g22.*(K21.*

g12+K22.*g22); 
 
K=-(d11h+d22h)./(sqrt(g)) + (((d1h).^2).*d11h + 

2*d1h.*d2h.*d12h + ((d2h).^2).*d22h)./sqrt(g.^3); 
R=2*(d11h.*d22h-(d12h).^2)./g.^2; 
 
UF=fft2(U); 
d1U=real(ifft2(A1.*UF)); 
d2U=real(ifft2(A2.*UF)); 
d12U=real(ifft2(A12.*UF)); 
d21U=d12U; 
d11U=real(ifft2(A11.*UF)); 
d22U=real(ifft2(A22.*UF)); 
%%%%operador laplace-beltrami 
LAU=g11.*d11U + 2*g12.*d12U + g22.*d22U -

(g11.*R111+2*g12.*R112+g22.*R122).*d1U -
(g11.*R211+2*g12.*R212+g22.*R222).*d2U; 

 

GRADU=((1+(d2h).^2).*(d1U).^2 -
2*d1h.*d2h.*d1U.*d2U + 
(1+(d1h).^2).*(d2U).^2)./g; 

 
UK=fft2(K-Cf); 
d1K=real(ifft2(A1.*UK)); 
d2K=real(ifft2(A2.*UK)); 
d12K=real(ifft2(A12.*UK)); 
d21K=d12K; 
d11K=real(ifft2(A11.*UK)); 
d22K=real(ifft2(A22.*UK)); 
LAK=g11.*d11K + 2*g12.*d12K + g22.*d22K -

(g11.*R111+2*g12.*R112+g22.*R122).*d1K -
(g11.*R211+2*g12.*R212+g22.*R222).*d2K; 
 

H1=A*((K-Cf).*(R-K.^2) - LAK); 
 
H2=4*(KK11.*d1U.*d1U + KK12.*d1U.*d2U + 

KK21.*d2U.*d1U + KK22.*d2U.*d2U); 
H3=-4*(K.*(LAU).^2)./sqrt(g); 
 
H=((-2*GRADU + 2*(LAU).^2 +(tau/2)*U.^2 + 

(1/4)*U.^4) + (A/2)*(K-Cf).^2 + s); 
 
T=-(H.*K + H1 + H2 + H3); 
 
%laplace beltrami operator 
 
UF2=fft2(LAU); 
d1U=real(ifft2(A1.*UF2)); 
d2U=real(ifft2(A2.*UF2)); 
d12U=real(ifft2(A12.*UF2)); 
d21U=d12U; 
d11U=real(ifft2(A11.*UF2)); 
d22U=real(ifft2(A22.*UF2)); 
 
LAU1=g11.*d11U + 2*g12.*d12U + g22.*d22U 

-(g11.*R111+2*g12.*R112+g22.*R122).*d1U -
(g11.*R211+2*g12.*R212+g22.*R222).*d2U; 

 
UF3=fft2(4*LAU1 + 4*LAU +tau*U + U.^3); 
d1U=real(ifft2(A1.*UF3)); 
d2U=real(ifft2(A2.*UF3)); 
d12U=real(ifft2(A12.*UF3)); 
d21U=d12U; 
d11U=real(ifft2(A11.*UF3)); 
d22U=real(ifft2(A22.*UF3)); 
 
LAU2=g11.*d11U + 2*g12.*d12U + g22.*d22U 

-(g11.*R111+2*g12.*R112+g22.*R122).*d1U -
(g11.*R211+2*g12.*R212+g22.*R222).*d2U; 
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%%%%%%%% 
h=delt*sqrt(g).*T + h; 
U=U+delt*LAU2; 
end 
 
%%% order parameter and deformation 
 
 pcolor(real(U)), shading interp, ... 
axis('off'), axis('equal'), title(t); 
figure 
pcolor(real(h)), shading interp, ... 
 axis('off'), axis('equal'), title(t); 
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